Mostrando 5 resultados de: 5
Filtros aplicados
Subtipo de publicación
Article(5)
Publisher
Molecules(2)
Chemical Biology and Drug Design(1)
Current Computer-Aided Drug Design(1)
Toxics(1)
Área temáticas
Farmacología y terapéutica(2)
Programación informática, programas, datos, seguridad(2)
Química física(2)
Artes gráficas y artes decorativas(1)
Biología(1)
Beyond model interpretability using LDA and decision trees for α-amylase and α-glucosidase inhibitor classification studies
ArticleAbstract: In this report are used two data sets involving the main antidiabetic enzyme targets α-amylase and αPalabras claves:antidiabetic agents, Decision Trees, linear discriminant analysis, QSARAutores:Amilkar Puris, Gerardo M. Casañola-Martin, Karel Diéguez-Santana, Pham-The H., Rasulev B., Rivera-Borroto O.M., Thu H.L.T.Fuentes:scopusA Fuzzy System Classification Approach for QSAR Modeling of αAmylase and α-Glucosidase Inhibitors
ArticleAbstract: Introduction: This report proposes the application of a new Machine Learning algorithm called FuzzyPalabras claves:Anti-diabetic agents, FURIA-C, induction rule, Lda, machine-learning techniques, QSARAutores:Amilkar Puris, Gerardo M. Casañola-Martin, González‐díaz H., Karel Diéguez-Santana, Rasulev B., Rivera-Borroto O.M.Fuentes:googlescopusDevelopment of Activity Rules and Chemical Fragment Design for In Silico Discovery of AChE and BACE1 Dual Inhibitors against Alzheimer’s Disease
ArticleAbstract: Multi-target drug development has become an attractive strategy in the discovery of drugs to treat oPalabras claves:AChE, Alzheimer’s disease, BACE1, dual-target inhibitor, fragment design, QSARAutores:Baecker D., Bao L.Q., Gerardo M. Casañola-Martin, Huong T.T.L., Mai Dung D.T., Nam N.H., Nguyen P.L., Pham-The H., Phuong Dung P.T., Phuong Nhung N., Rasulev B., Thi Thuan N.Fuentes:scopusIn Silico Pbkp_rediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach
ArticleAbstract: In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative StrPalabras claves:Accumulated Local Effect, ensemble model, Machine learning, nitroaromatic compounds, QSAR, QSTR, Support Vector Machine, ToxicityAutores:Daghighi A., Gerardo M. Casañola-Martin, Lučić B., Milenković D., Rasulev B., Timmerman T.Fuentes:scopusThe Hydrolysis Rate of Paraoxonase-1 Q and R Isoenzymes: An In Silico Study Based on In Vitro Data
ArticleAbstract: Human serum paraoxonase-1 (PON1) is an important hydrolase-type enzyme found in numerous tissues. NoPalabras claves:Isoenzymes, Molecular docking, molecular dynamics, molecular modeling, PON1, QM/MM, QSAR, RPON1Autores:Gauld J.W., Gerardo M. Casañola-Martin, Karabulut S., Mansour B., Rasulev B.Fuentes:scopus