Mostrando 10 resultados de: 13
Publisher
Frontiers in Artificial Intelligence and Applications(2)
Pattern Recognition(2)
ESANN 2011 - 19th European Symposium on Artificial Neural Networks(1)
Electronics (Switzerland)(1)
Expert Systems with Applications(1)
Área temáticas
Programación informática, programas, datos, seguridad(7)
Ciencias de la computación(4)
Funcionamiento de bibliotecas y archivos(3)
Métodos informáticos especiales(3)
Medicina y salud(2)
Área de conocimiento
Aprendizaje automático(10)
Ciencias de la computación(4)
Algoritmo(3)
Cáncer(1)
Inteligencia artificial(1)
Objetivos de Desarrollo Sostenible
ODS 9: Industria, innovación e infraestructura(13)
ODS 4: Educación de calidad(6)
ODS 8: Trabajo decente y crecimiento económico(4)
ODS 3: Salud y bienestar(3)
Origen
scopus(13)
A note on the bias in SVMs for multiclassification
ArticleAbstract: During the usual SVM biclassification learning process, the bias is chosen a posteriori as the valuePalabras claves:bias, Multiclassification, support vector machine (SVM)Autores:Cecilio Angulo Bahón, Gonzalez-Abril L., Ortega J.A., Velasco F.Fuentes:scopusA post-processing strategy for SVM learning from unbalanced data
Conference ObjectAbstract: Standard learning algorithms may perform poorly when learning from unbalanced datasets. Based on thePalabras claves:Autores:Cecilio Angulo Bahón, Gonzalez-Abril L., Nuñez H.Fuentes:scopusConcerning nuclei, distances, and similitudes among intervals
ArticleAbstract: A high number of applications exists where the information to code comes expressed as an interval ofPalabras claves:Analysis Interval, Distances, Machine Kernel, Qualitative reasoning, similarityAutores:Cecilio Angulo Bahón, Gonzalez-Abril L., Ortega J.A., Ruiz F.J., Velasco F.Fuentes:scopusDual unification of bi-class support vector machine formulations
ArticleAbstract: Support vector machine (SVM) theory was originally developed on the basis of a linearly separable biPalabras claves:Bi-classification, Convex hull, Large margin principle, Optimization, SVMAutores:Cecilio Angulo Bahón, Gonzalez-Abril L., Mallofre A.C., Velasco F.Fuentes:scopusImproving SVM Classification on Imbalanced Datasets by Introducing a New Bias
ArticleAbstract: Support Vector Machine (SVM) learning from imbalanced datasets, as well as most learning machines, cPalabras claves:bias, Cost-sensitive strategy, Post-processing, SMOTE, Support Vector MachineAutores:Cecilio Angulo Bahón, Gonzalez-Abril L., Nuñez H.Fuentes:scopusIntroducing a 'difficulty factor' for dataset bi-classification using SVM
Conference ObjectAbstract: This paper analyses the difficulty associated to the task of binary classification when a Support VePalabras claves:classification, Complexity, Glass dataset, Lagrange multipliers, SVMAutores:Cecilio Angulo Bahón, Gonzalez-Abril L.Fuentes:scopusMulti-classification by using tri-class SVM
ArticleAbstract: The standard form for dealing with multi-class classification problems when bi-classifiers are usedPalabras claves:Bi-classifier, Multi-classification, Ordinal regression, Support Vector MachineAutores:Cecilio Angulo Bahón, Gonzalez-Abril L., Ortega J.A., Ruiz F.J.Fuentes:scopusMulti-classification with Tri-class support vector machines. A review
Conference ObjectAbstract: In this article, with the aim to avoid the loss of information that occurs in the usual one-versus-oPalabras claves:Autores:Cecilio Angulo Bahón, Gonzalez-Abril L., Mallofre A.C., Velasco F.Fuentes:scopusOnline motion recognition using an accelerometer in a mobile device
ArticleAbstract: This paper introduces a new method to implement a motion recognition process using a mobile phone fiPalabras claves:Features extraction, pattern recognition, SVMAutores:Cecilio Angulo Bahón, Fuentes D., Gonzalez-Abril L., Ortega J.A.Fuentes:scopusStatistical Validation of Synthetic Data for Lung Cancer Patients Generated by Using Generative Adversarial Networks
ArticleAbstract: The development of healthcare patient digital twins in combination with machine learning technologiePalabras claves:Generative Adversarial Network, lung cancer, personalized medicine, validation toolsAutores:Cecilio Angulo Bahón, Gonzalez-Abril L., Lopez-Guerra J.L., Ortega J.A.Fuentes:scopus