Mostrando 10 resultados de: 11
Filtros aplicados
Publisher
2017 IEEE 2nd Ecuador Technical Chapters Meeting, ETCM 2017(2)
2022 IEEE ANDESCON: Technology and Innovation for Andean Industry, ANDESCON 2022(2)
IFAC-PapersOnLine(2)
Nature Communications(2)
2016 IEEE Ecuador Technical Chapters Meeting, ETCM 2016(1)
Classification of subjects with parkinson's disease using finger tapping dataset
Conference ObjectAbstract: Parkinson's disease is the second most common neurodegenerative disorder and affects more than 7 milPalabras claves:classification, Finger Tapping, Machine learning, Parkinson's DiseaseAutores:Diego Hernán Peluffo-Ordóñez, Enrique Pelaez, Francis R. Loayza, Leandro L. Lorente-Leyva, Sanchez-Pozo N.N., Victor Asanza ArmijosFuentes:scopusClustering of EEG occipital signals using k-means
Conference ObjectAbstract: Recent studies show that it is feasible to use electrical signals from Electro-encephalography (EEG)Palabras claves:Butterworth Filter, Clusterization, Direct Current Artifacts, Electro-encephalography, Fast fourier transform, Occipital Lobe, Signal PreprocessingAutores:Carlos A. Salazar, Carmen Vaca-Ruiz, Christian Sacarelo, Enrique Pelaez, Francis R. Loayza, Kerly Ochoa, Victor Asanza ArmijosFuentes:googlescopusAuthor Correction: Federated learning enables big data for rare cancer boundary detection (Nature Communications, (2022), 13, 1, (7346), 10.1038/s41467-022-33407-5)
OtherAbstract: In this article the author name Carmen Balaña was incorrectly written as Carmen Balaña Quintero. ThePalabras claves:Autores:Agzarian M., Alexander G.S., Baid U., Balaña C., Bendszus M., Bhardwaj S., Bilello M., Brugnara G., Calabrese E., Capellades J., Cha S., Chang K., Chen C., Chong C., Cloughesy T.F., Currie S., Davatzikos C., Dicker A.P., Dostál M., Dou Q., Edwards B., Ellingson B.M., Ezhov I., Falcão A.X., Farinhas J., Fatania K., Flanders A.E., Foley P., Francis R. Loayza, Frood R., Garrett J., Ghodasara S., Gruzdev A., Hagiwara A., Haunschmidt A., Heng P.A., Holcomb J., Huang R.Y., Ingalhalikar M., Jadhav M., Jeraj R., Jiang M., Jones C.K., Karkada D., Keřkovský M., Kofler F., Kopřivová T., Kozubek M., LaMontagne P., Larson M., Liem S., Lombardo J., Lucio D.R., Lux F., Maier-Hein K., Maldjian J.A., Marcus D., Martins S.B., Matula P., Meckel S., Menotti D., Metz M., Michálek J., Mitchell J.R., Mohan S., Necker G., Oughourlian T., Palmer J.D., Pandey U., Pati S., Pichler J., Pinho M.C., Preetha C.J., Puig J., Raymond C., Reddy D., Reina G.A., Rudie J., Sahm F., Saini J., Sair H.I., Sako C., Sebastian Quevedo, Sheller M., Shukla G., So T.Y., Sprenger F., Teixeira B.C.A., To M.S., Trenkler J., Venkataraman A., Villanueva-Meyer J., Vogelbaum M.A., Vollmuth P., Vybíhal V., Wagner B.C., Wang C., Wang S.H., Wick W., Wiestler B., Yogananda C.G.B., Zenk M.Fuentes:scopusAutomatic Brain White Matter Hyperintensities Segmentation with Swin U-Net
Conference ObjectAbstract: This work proposes an automatic segmentation approach to detect White Matter Hyperintensities (WMH)Palabras claves:deep learning, segmentation, Swin-Transformer, WMHAutores:Bryan V. Piguave, Enrique Pelaez, Francis R. Loayza, José ViteriFuentes:googlescopusAutomatic brain white matter hypertinsities segmentation using deep learning techniques
Conference ObjectAbstract: White Matter Hyperintensities (WMH) are lesions observed in the brain as bright regions in Fluid AttPalabras claves:Convolutional neural network, U-net, WMH SegmentationAutores:Enrique Pelaez, Fabricio Layedra, Francis R. Loayza, José ViteriFuentes:googlescopusAnatomical Patterns Recognition of Impulse Control Disorders of Parkinsonian Patients Using Deep Learning of MRI structural images
Conference ObjectAbstract: In Parkinson's disease (PD) several neuropsychiatric conditions are highly frequent including impulsPalabras claves:deep learning, Impulsive Compulsive Disorders, MRI, PÁRKINSONAutores:Alexander Saravia, Enrique Pelaez, Francis R. Loayza, Jocellyn Luna, Obeso I., Victor Asanza ArmijosFuentes:googlescopusA Pipeline for Segmenting and Classifying Brain Lesions Caused by Stroke: A Machine Learning Approach
Conference ObjectAbstract: Brain injuries caused by strokes are one of the leading causes of disability in the world. Current pPalabras claves:Artificial Intelligence, Brain injuries, Machine learning, strokeAutores:Alex Macas, Enrique Pelaez, Francis R. Loayza, Franco-Maldonado H., Roberto MenaFuentes:scopusA voice analysis approach for recognizing Parkinson's disease patterns
Conference ObjectAbstract: Many of the patients diagnosed with Parkinson's disease (PD) do not know they have it until the mostPalabras claves:Machine learning, PÁRKINSON, Voice AnalysisAutores:Enrique Pelaez, Francis R. Loayza, Paucar G. Bryan, Yu Chen TaiFuentes:scopusFederated learning enables big data for rare cancer boundary detection
ArticleAbstract: Although machine learning (ML) has shown promise across disciplines, out-of-sample generalizabilityPalabras claves:Autores:Agzarian M., Alexander G.S., Baid U., Bendszus M., Bhardwaj S., Bilello M., Brugnara G., Calabrese E., Capellades J., Cha S., Chang K., Chen C., Chong C., Cloughesy T.F., Currie S., Davatzikos C., Dicker A.P., Dostál M., Dou Q., Edwards B., Ellingson B.M., Enrique Pelaez, Ezhov I., Falcão A.X., Farinhas J., Fatania K., Flanders A.E., Foley P., Francis R. Loayza, Frood R., Garrett J., Ghodasara S., Gruzdev A., Hagiwara A., Haunschmidt A., Heng P.A., Holcomb J., Huang R.Y., Ingalhalikar M., Jadhav M., Jeraj R., Jiang M., Jones C.K., Karkada D., Keřkovský M., Kofler F., Kopřivová T., Kozubek M., LaMontagne P., Larson M., Liem S., Lombardo J., Lucio D.R., Lux F., Maier-Hein K., Maldjian J.A., Marcus D., Martins S.B., Matula P., Meckel S., Menotti D., Metz M., Michálek J., Mitchell J.R., Mohan S., Necker G., Oughourlian T., Palmer J.D., Pandey U., Pati S., Pichler J., Pinho M.C., Preetha C.J., Puig J., Quintero C.B., Raymond C., Reddy D., Reina G.A., Rudie J., Sahm F., Saini J., Sair H.I., Sako C., Sebastián Quevedo-Sacoto, Sheller M., Shukla G., So T.Y., Sprenger F., Teixeira B.C.A., To M.S., Trenkler J., Venkataraman A., Villanueva-Meyer J., Vogelbaum M.A., Vollmuth P., Vybíhal V., Wagner B.C., Wang C., Wang S.H., Wick W., Wiestler B., Yogananda C.G.B., Zenk M.Fuentes:scopusEEG signal clustering for motor and imaginary motor tasks on hands and feet
Conference ObjectAbstract: Modern technologies use Brain Computer Interfaces (BCI) to control devices or prosthesis for peoplePalabras claves:Brain computer interface, Butterworth Filter, DBscan, Direct Current Artifacts, electroencephalography, Fast fourier transform, hierarchical-clustering, k-medoids, kmeans, power spectral density, Spectral clusteringAutores:Enrique Pelaez, Francis R. Loayza, Victor Asanza ArmijosFuentes:googlescopus