Mostrando 10 resultados de: 11
Filtros aplicados
Publisher
Molecules(2)
Chemical Biology and Drug Design(1)
Current Computer-Aided Drug Design(1)
Current Pharmaceutical Design(1)
Current Protein and Peptide Science(1)
Área temáticas
Ciencias de la computación(4)
Programación informática, programas, datos, seguridad(3)
Química física(3)
Farmacología y terapéutica(2)
Medicina y salud(2)
Atom based linear index descriptors in QSAR-machine learning classifiers for the pbkp_rediction of ubiquitin-proteasome pathway activity
ArticleAbstract: Abstract: This report showed the use of the atom-based linear index together with different classicPalabras claves:Atom-based linear indices, Machine learning, QSAR, ToMoCoMD-CARDD software, Ubiquitin-proteasome pathway inhibitorsAutores:Garit J., Gerardo M. Casañola-Martin, Pham-The H., Thu H.L.T.Fuentes:scopusBeyond model interpretability using LDA and decision trees for α-amylase and α-glucosidase inhibitor classification studies
ArticleAbstract: In this report are used two data sets involving the main antidiabetic enzyme targets α-amylase and αPalabras claves:antidiabetic agents, Decision Trees, linear discriminant analysis, QSARAutores:Amilkar Puris, Gerardo M. Casañola-Martin, Karel Diéguez-Santana, Pham-The H., Rasulev B., Rivera-Borroto O.M., Thu H.L.T.Fuentes:scopusAnalysis of proteasome inhibition pbkp_rediction using atom-based quadratic indices enhanced by machine learning classification techniques
ArticleAbstract: In this work the use of 2D atom-based quadratic indices is shown in the pbkp_rediction of proteasomePalabras claves:Atom-based quadratic index, Classification and regression model, Machine learning, Proteasome inhibition, QSAR, ToMoCoMD-CARDD softwareAutores:Abad C., Garit J., Gerardo M. Casañola-Martin, Pérez-Giménez F., Thu H.L.T., Torrens F., Yovani Marrero-PonceFuentes:scopusA Fuzzy System Classification Approach for QSAR Modeling of αAmylase and α-Glucosidase Inhibitors
ArticleAbstract: Introduction: This report proposes the application of a new Machine Learning algorithm called FuzzyPalabras claves:Anti-diabetic agents, FURIA-C, induction rule, Lda, machine-learning techniques, QSARAutores:Amilkar Puris, Gerardo M. Casañola-Martin, González‐díaz H., Karel Diéguez-Santana, Rasulev B., Rivera-Borroto O.M.Fuentes:googlescopusDevelopment of Activity Rules and Chemical Fragment Design for In Silico Discovery of AChE and BACE1 Dual Inhibitors against Alzheimer’s Disease
ArticleAbstract: Multi-target drug development has become an attractive strategy in the discovery of drugs to treat oPalabras claves:AChE, Alzheimer’s disease, BACE1, dual-target inhibitor, fragment design, QSARAutores:Baecker D., Bao L.Q., Gerardo M. Casañola-Martin, Huong T.T.L., Mai Dung D.T., Nam N.H., Nguyen P.L., Pham-The H., Phuong Dung P.T., Phuong Nhung N., Rasulev B., Thi Thuan N.Fuentes:scopusMulti-output model with Box–Jenkins operators of linear indices to pbkp_redict multi-target inhibitors of ubiquitin–proteasome pathway
ArticleAbstract: The ubiquitin–proteasome pathway (UPP) plays an important role in the degradation of cellular proteiPalabras claves:CHEMBL, Moving averages, Multi-scale and multi-output models, multi-target, QSAR, Ubiquitin–proteasome pathway inhibitorsAutores:Abad C., Gerardo M. Casañola-Martin, González‐díaz H., Merino-Sanjuán M., Pérez-Giménez F., Thu H.L.T., Yovani Marrero-PonceFuentes:scopusMulti-output model with box-jenkins operators of quadratic indices for pbkp_rediction of malaria and cancer inhibitors targeting ubiquitin-proteasome pathway (UPP) proteins
ArticleAbstract: The ubiquitin-proteasome pathway (UPP) is the primary degradation system of short-lived regulatory pPalabras claves:Atom-based quadratic indices, Cáncer, CHEMBL, MALARIA, Moving average, Multi-scale and multi-output model, multi-target, QSAR, UPP inhibitorAutores:Abad C., Gerardo M. Casañola-Martin, González‐díaz H., Merino-Sanjuán M., Pérez-Giménez F., Thu H.L.T., Yovani Marrero-PonceFuentes:scopusIn Silico Pbkp_rediction of the Toxicity of Nitroaromatic Compounds: Application of Ensemble Learning QSAR Approach
ArticleAbstract: In this work, a dataset of more than 200 nitroaromatic compounds is used to develop Quantitative StrPalabras claves:Accumulated Local Effect, ensemble model, Machine learning, nitroaromatic compounds, QSAR, QSTR, Support Vector Machine, ToxicityAutores:Daghighi A., Gerardo M. Casañola-Martin, Lučić B., Milenković D., Rasulev B., Timmerman T.Fuentes:scopusMachine learning-based models to pbkp_redict modes of toxic action of phenols to Tetrahymena pyriformis
ArticleAbstract: The phenols are structurally heterogeneous pollutants and they present a variety of modes of toxic aPalabras claves:Machine learning technique, mode of toxic action, molecular descriptor, phenol derivative, Pollutant, QSARAutores:Garit J., Gerardo M. Casañola-Martin, Pham-The H., Stephen Jones Barigye, Torreblanca A., Torrens F.Fuentes:scopusPbkp_rediction of aquatic toxicity of benzene derivatives to tetrahymena pyriformis according to OECD principles
ReviewAbstract: Background: Many QSAR studies have been developed to pbkp_redict acute toxicity over several biomarkPalabras claves:Aquatic toxicology, Atom-based non-stochastic and stochastic linear indices, ecotoxicity, QSAR, Tetrahymena pyriformisAutores:Abad C., Garit J., Gerardo M. Casañola-Martin, Stephen Jones Barigye, Torreblanca A., Torrens F.Fuentes:scopus