Mostrando 4 resultados de: 4
Filtros aplicados
Subtipo de publicación
Conference Object(4)
Publisher
IFAC-PapersOnLine(2)
IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies, CHILECON 2019(1)
Área temáticas
Métodos informáticos especiales(2)
Probabilidades y matemática aplicada(2)
Ciencias de la computación(1)
Física aplicada(1)
Programación informática, programas, datos, seguridad(1)
Área de conocimiento
Aprendizaje automático(2)
Optimización matemática(2)
Algoritmo(1)
Estadísticas(1)
Inferencia estadística(1)
Objetivos de Desarrollo Sostenible
ODS 17: Alianzas para lograr los objetivos(4)
ODS 4: Educación de calidad(3)
ODS 9: Industria, innovación e infraestructura(3)
ODS 10: Reducción de las desigualdades(1)
ODS 16: Paz, justicia e instituciones sólidas(1)
Origen
scopus(4)
Empirical Bayes estimation utilizing finite Gaussian Mixture Models
Conference ObjectAbstract: In this paper we develop an identification algorithm to obtain an estimation of the prior distributiPalabras claves:Bayesian inference, Empirical Bayes, ExpectationMaximization, Gaussian Mixture, Prior distributionAutores:Carvajal R., Juan C. Agüero, Orellana R.Fuentes:scopusEM-based identification of static errors-in-variables systems utilizing Gaussian Mixture models
Conference ObjectAbstract: In this paper we address the problem of identifying a static errors-in-variables system. Our proposaPalabras claves:Errors-in-Variables, Estimation, Expectation-maximization, Gaussian Mixture, Maximum likelihood, OptimizationAutores:Carvajal R., Cedeno A.L., Juan C. Agüero, Orellana R.Fuentes:scopusMaximum Likelihood Infinite Mixture Distribution Estimation Utilizing Finite Gaussian Mixtures<sup>⁎</sup>
Conference ObjectAbstract: In this paper we develop a Maximum Likelihood estimation algorithm for the estimation of infinite miPalabras claves:Estimation, Expectation-maximization, Gaussian Mixture, Maximum likelihood, OptimizationAutores:Carvajal R., Juan C. Agüero, Orellana R.Fuentes:scopusModel error modelling using a stochastic embedding approach with gaussian mixture models for FIR systems
Conference ObjectAbstract: In this paper a Maximum Likelihood estimation algorithm for error-model modelling using a stochasticPalabras claves:Estimation, Expectation-maximization, Gaussian Mixture, Maximum likelihood, Model errors, Stochastic embeddingAutores:Carvajal R., Goodwin G.C., Juan C. Agüero, Orellana R.Fuentes:scopus