Mostrando 9 resultados de: 9
Filtros aplicados
Publisher
ACM International Conference Proceeding Series(1)
Computer Methods and Programs in Biomedicine(1)
Computer Science and Information Systems(1)
IET Computer Vision(1)
IET Image Processing(1)
Área temáticas
Métodos informáticos especiales(3)
Enfermedades(2)
Funcionamiento de bibliotecas y archivos(1)
Física aplicada(1)
Otras ramas de la ingeniería(1)
Detection and classification of the breast abnormalities in digital mammograms via regional Convolutional Neural Network
Conference ObjectAbstract: Automatic detection and classification of the masses in mammograms are still a big challenge and plaPalabras claves:Breast Cancer, Computer Aided Diagnosis, deep learning, Mass Detection and Classification, YOLOAutores:Al-Antari M.A., Al-Masni M.A., Edwin Valarezo Anazco, Gi G., Han S.M., Kim T.S., Kim T.Y., Park J.M., Rivera P.Fuentes:googlescopusAn Integrated ARMA-Based Deep Autoencoder and GRU Classifier System for Enhanced Recognition of Daily Hand Activities
ArticleAbstract: Recognition of hand activities of daily living (hand-ADL) is useful in the areas of human-computer iPalabras claves:Autoregressive processes, cnn, deep learning, hand activity recognition, rnn, wearable sensorsAutores:Edwin Valarezo Anazco, Kim T.S., Rivera P.Fuentes:googlescopusHand gesture recognition using single patchable six-axis inertial measurement unit via recurrent neural networks
ArticleAbstract: Recording human gestures from a wearable sensor produces valuable information to implement control gPalabras claves:Control gestures, Hand gesture recognition, Patchable IMU, Recurrent Neural Network, Six-axis inertial sensorAutores:Edwin Valarezo Anazco, Han S.J., Kim K., Kim T.S., Lee S., Rivera P.Fuentes:googlescopusHuman activities recognition with a single writs imu via a variational autoencoder and android deep recurrent neural nets
ArticleAbstract: Human Activity Recognition (HAR) is an active research field because of its versatility towards variPalabras claves:Android Deep Recurrent Neural Networks, Denoising Autoencoder, Human activity recognition, Mobile applicationAutores:Edwin Valarezo Anazco, Kim T.S., Park H., Park N., Rivera P.Fuentes:googlescopusHuman-like Object Grasping and Relocation for an Anthropomorphic Robotic Hand with Natural Hand Pose Priors in Deep Reinforcement Learning
Conference ObjectAbstract: Anthropomorphic manipulators such as robotic hands (i.e., agent) can be used to perform complex objePalabras claves:Anthropomorphic Hand Manipulation, Deep Reinforcement Learning., Human-Like Object Grasping, Natural Hand Pose PriorAutores:Byun K., Edwin Valarezo Anazco, Kim T.S., Lee S., Oh J., Park H., Park N., Rivera P.Fuentes:googlescopusTrilateral convolutional neural network for 3D shape reconstruction of objects from a single depth view
ArticleAbstract: In this study, the authors propose a novel three-dimensional (3D) convolutional neural network for sPalabras claves:Autores:Choi M.T., Edwin Valarezo Anazco, Kim T.S., Rivera P.Fuentes:googlescopusSimultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system
ArticleAbstract: Background and objective: Automatic detection and classification of the masses in mammograms are stiPalabras claves:Breast Cancer, Computer Aided Diagnosis, deep learning, Mass Detection and Classification, You Only Look Once (YOLO)Autores:Al-Antari M.A., Al-Masni M.A., Choi M.T., Edwin Valarezo Anazco, Gi G., Han S.M., Kim T.S., Kim T.Y., Park J.M., Rivera P.Fuentes:googlescopusReward Shaping to Learn Natural Object Manipulation With an Anthropomorphic Robotic Hand and Hand Pose Priors via On-Policy Reinforcement Learning
Conference ObjectAbstract: A key challenge in reinforcement learning (RL) for robot manipulation is to provide a reward functioPalabras claves:Anthropomorphic robotic hand, Deep reinforcement learning, Hand Poses Priors, object manipulationAutores:Edwin Valarezo Anazco, Jeong J.G., Jung H., Kim T.S., Lee J.H., Oh J., Rivera P., Ryu G.Fuentes:googlescopusThree-dimensional shape reconstruction of objects from a single depth view using deep U-Net convolutional neural network with bottle-neck skip connections
ArticleAbstract: Three-dimensional (3D) shape reconstruction of objects requires multiple scans and complex reconstruPalabras claves:Autores:Edwin Valarezo Anazco, Kim T.S., Rivera Lopez P.Fuentes:scopus