Mostrando 4 resultados de: 4
Filtros aplicados
Subtipo de publicación
Conference Object(4)
Publisher
GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion(2)
GECCO 2017 - Proceedings of the 2017 Genetic and Evolutionary Computation Conference(1)
GECCO 2018 Companion - Proceedings of the 2018 Genetic and Evolutionary Computation Conference Companion(1)
Área temáticas
Ciencias de la computación(2)
Ciencias Naturales y Matemáticas(1)
Enfermedades(1)
Lingüística(1)
Métodos informáticos especiales(1)
Origen
scopus(4)
Closed state model for understanding the dynamics of MOEAs
Conference ObjectAbstract: This work proposes the use of simple closed state models to capture, analyze and compare the dynamicPalabras claves:empirical study, Genetic Algorithms, multi-objective optimization, Working principles of evolutionary computingAutores:Derbel B., Hernán E. Aguirre, Liefooghe A., Monzón H., Tanaka K., Verel S.Fuentes:scopusDynamic compartmental models for algorithm analysis and population size estimation
Conference ObjectAbstract: Dynamic Compartmental Models (DCM) can be used to study the population dynamics of Multi- and Many-oPalabras claves:compartmental models, empirical study, Genetic Algorithms, Modeling, multi-objective optimization, Working principles of evolutionary computingAutores:Derbel B., Hernán E. Aguirre, Liefooghe A., Monzón H., Tanaka K., Verel S.Fuentes:scopusStudying MOEAs dynamics and their performance using a three compartmental model
Conference ObjectAbstract: The road to a better design of multi- and many-objective evolutionary algorithms requires a deeper uPalabras claves:empirical study, Genetic Algorithms, multi-objective optimization, Working principles of evolutionary computingAutores:Derbel B., Hernán E. Aguirre, Liefooghe A., Monzón H., Tanaka K., Verel S.Fuentes:scopusStudying compartmental models interpolation to estimate MOEAS population size
Conference ObjectAbstract: Dynamical compartmental models capture the population dynamics of Multi-objective Optimization EvoluPalabras claves:empirical study, Genetic Algorithms, multi-objective optimization, Working principles of evolutionary computingAutores:Derbel B., Hernán E. Aguirre, Liefooghe A., Monzón H., Tanaka K., Verel S.Fuentes:scopus