Surveying Teachers’ Preferences and Boundaries Regarding Human-AI Control in Dynamic Pairing of Students for Collaborative Learning


Abstract:

Orchestration tools may support K-12 teachers in facilitating student learning, especially when designed to address classroom stakeholders’ needs. Our previous work revealed a need for human-AI shared control when dynamically pairing students for collaborative learning in the classroom, but offered limited guidance on the role each agent should take. In this study, we designed storyboards for scenarios where teachers, students and AI co-orchestrate dynamic pairing when using AI-based adaptive math software for individual and collaborative learning. We surveyed 54 math teachers on their co-orchestration preferences. We found that teachers would like to share control with the AI to lessen their orchestration load. As well, they would like to have the AI propose student pairs with explanations, and identify risky proposed pairings. However, teachers are hesitant to let the AI auto-pair students even if they are busy, and are less inclined to let AI override teacher-proposed pairing. Our study contributes to teachers’ needs, preference, and boundaries for how they want to share the task and control of student pairing with the AI and students, and design implications in human-AI co-orchestration tools.

Año de publicación:

2021

Keywords:

  • Design orchestration tools
  • Human-AI collaboration
  • CSCL
  • HCI
  • CLASSROOM

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Tecnología educativa

Áreas temáticas:

  • Funcionamiento de bibliotecas y archivos