Workload detection based on EEG device for teleoperation of a mobile robot


Abstract:

This paper proposes a brain signals based method to evaluate a human operator workload while teleoperating a mobile robot in presence of time delay. The procedure based on denoising and decomposition wavelet transform can be applied to raw EEG signals, analyzing the energy in the delta band to detect four states of cognitive workload. The index obtained is validated using the NASA-TLX question nary and quantitative metrics like time-to-complete the task and error of path tracking.

Año de publicación:

2017

Keywords:

  • robot
  • workload
  • Teleoperation
  • Brain signals
  • DELAY

Fuente:

googlegoogle
scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencias de la computación
  • Robótica

Áreas temáticas:

  • Física aplicada
  • Otras ramas de la ingeniería