Enhancing Autonomous Robot Navigation Based on Deep Reinforcement Learning: Comparative Analysis of Reward Functions in Diverse Environments


Abstract:

Autonomous robot navigation in complex environments presents a significant challenge due to efficient decision-making for reaching goals and avoiding obstacles. This paper addresses this issue through the use of deep reinforcement learning techniques and a comprehensive analysis of reward functions and their impact on autonomous navigation. The study emphasizes the importance of selecting the most effective reward functions to achieve maximum robot performance in a variety of scenarios. Moreover, we propose a new reward mechanism that enables the robot to avoid collisions when objects move faster than the robot, resulting in the robot halting its motion to allow the object to pass before resuming its course. The effectiveness of these reward functions is validated through simulations, providing valuable insights into the robustness of robot navigation. Further details and simulations can be found in the following link: https://youtu.be/pPQDc25vj1U

Año de publicación:

Keywords:

  • Deep reinforcement learning
  • Autonomous robot navigation
  • deep reinforcement learning
  • reward functions

Fuente:

scopusscopus

Tipo de documento:

Conference Object

Estado:

Acceso restringido

Áreas de conocimiento:

  • Ciencias de la computación
  • Robótica
  • Simulación por computadora

Áreas temáticas de Dewey:

  • Otras ramas de la ingeniería
  • Métodos informáticos especiales
Procesado con IAProcesado con IA

Objetivos de Desarrollo Sostenible:

  • ODS 16: Paz, justicia e instituciones sólidas
  • ODS 10: Reducción de las desigualdades
  • ODS 8: Trabajo decente y crecimiento económico
Procesado con IAProcesado con IA