Mostrando 9 resultados de: 9
Publisher
IEEE International Conference on Fuzzy Systems(2)
2021 IEEE Symposium Series on Computational Intelligence, SSCI 2021 - Proceedings(1)
IEEE Access(1)
Journal of Process Control(1)
Proceedings - 2021 International Conference on Computational Science and Computational Intelligence, CSCI 2021(1)
Área temáticas
Ciencias de la computación(6)
Física aplicada(4)
Métodos informáticos especiales(3)
Calefacción, ventilación y aire acondicionado(1)
Ciencias sociales(1)
Autonomic Management of a Building's Multi-HVAC System Start-Up
ArticleAbstract: Most studies about the control, automation, optimization and supervision of building HVAC systems coPalabras claves:Autonomic computing, energy management, heating, Machine learning, multi-objective optimization, smart building, ventilation and air conditioning systemsAutores:De Mesa J.G., Gallego-Salvador N., Garcès-Jimènez A., Gómez-Pulido J.M., José Lisandro Aguilar Castro, R-Moreno M.D.Fuentes:scopusAutonomous Cycle of Data Analysis Tasks for Scheduling the Use of Controllable Load Appliances using Renewable Energy
Conference ObjectAbstract: With the arrival of smart buildings with renewable energy generation capacities, new possibilities fPalabras claves:Artificial Intelligence, Data Analysis, energy consumption scheduling, Smart Buildings, smart gridsAutores:Giraldo J., Jaramillo A., José Lisandro Aguilar Castro, R-Moreno M.D., Zapata M., Zuluaga L.Fuentes:scopusAnalysis of Customer Energy Consumption Patterns using an Online Fuzzy Clustering Technique
Conference ObjectAbstract: Currently, there is a high rate of generation of new information about the Energy Consumption of cusPalabras claves:Clustering algorithm, fuzzy systems, LAMDA, ONLINE LEARNING, pattern evolutionAutores:Gull C.Q., José Lisandro Aguilar Castro, R-Moreno M.D., Viera J.Fuentes:scopusA Multi-label Approach for Diagnosis Problems in Energy Systems using LAMDA algorithm
Conference ObjectAbstract: In this paper, we propose a supervised multilabel algorithm called Learning Algorithm for MultivariaPalabras claves:diagnosis problems, fuzzy systems, LAMDA, Multilabel classificationAutores:Gull C.Q., José Lisandro Aguilar Castro, R-Moreno M.D.Fuentes:scopusA semi-supervised learning approach to study the energy consumption in smart buildings
Conference ObjectAbstract: In this work, we use the semi-supervised LAMDA-HSCC algorithm for characterizing the energy consumptPalabras claves:Energetic Consumption, LAMDA, Multivariate Data Analysis, semi-supervised learningAutores:Gull C.Q., José Lisandro Aguilar Castro, R-Moreno M.D.Fuentes:scopusA synthetic Data Generator for Smart Grids based on the Variational-Autoencoder Technique and Linked Data Paradigm
Conference ObjectAbstract: In a smart environment like the smart grids, it is necessary to have knowledge models that allow solPalabras claves:deep learning, Linked data, smart Grid, Synthetic Data Generator, Variational autoencodersAutores:José Lisandro Aguilar Castro, R-Moreno M.D., Santos R.D.Fuentes:scopusA systematic literature review on the use of artificial intelligence in energy self-management in smart buildings
ReviewAbstract: Buildings are one of the main consumers of energy in cities, which is why a lot of research has beenPalabras claves:Artificial Intelligence, Autonomous management architecture, Energy Management System, smart building, smart Grid, Systematic literature reviewAutores:Garcès-Jimènez A., José Lisandro Aguilar Castro, R-Moreno M.D., Rodrigo G.Fuentes:scopusApproaches based on LAMDA control applied to regulate HVAC systems for buildings
ArticleAbstract: The control of HVAC (Heating Ventilation and Air Conditioning) systems is usually complex because itPalabras claves:HVAC systems, Intelligent Control, LAMDA, Nonlinear systems, SMCAutores:David Fernando Pozo Espín, José Lisandro Aguilar Castro, Luis Morales Morales, R-Moreno M.D.Fuentes:googlescopusAn Analysis of the Energy Consumption Forecasting Problem in Smart Buildings Using LSTM
ArticleAbstract: This work explores the process of pbkp_redicting energy consumption in smart buildings based on thePalabras claves:Energy consumption, forecasting models, LSTM technique, Machine learning, Smart Buildings, TIME SERIESAutores:Durand D., José Lisandro Aguilar Castro, R-Moreno M.D.Fuentes:scopus