Optimal reconfiguration of a parallel robot for forward singularities avoidance in rehabilitation therapies. A comparison via different optimization methods


Abstract:

This paper presents an efficient algorithm for the reconfiguration of a parallel kinematic manipulator with four degrees of freedom. The reconfiguration of the parallel manipulator is posed as a nonlinear optimization problem where the design variables correspond to the anchoring points of the limbs of the robot on the fixed platform. The penalty function minimizes the forces applied by the actuators during a specific trajectory. Some constraints are imposed to avoid forward singularities and guarantee the feasibility of the active generalized coordinates for a certain trajectory. The results are compared with different optimization approaches with the aim of avoiding getting trapped into a local minimum and undergoing forward singularities. The comparison covers evolutionary algorithms, heuristics optimizers, multistrategy algorithms, and gradient-based optimizers. The proposed methodology has been successfully tested on an actual parallel robot for different trajectories.

Año de publicación:

2020

Keywords:

  • Trajectory planning
  • Direct singularities
  • Parallel Robot
  • Optimization
  • reconfiguration
  • Rehabilitation

Fuente:

scopusscopus

Tipo de documento:

Article

Estado:

Acceso abierto

Áreas de conocimiento:

  • Optimización matemática
  • Optimización matemática

Áreas temáticas:

  • Física aplicada