Mostrando 9 resultados de: 9
Filtros aplicados
Publisher
2019 International Conference on Computing, Networking and Communications, ICNC 2019(1)
2020 International Conference on Artificial Intelligence in Information and Communication, ICAIIC 2020(1)
9th International Conference on Information and Communication Technology Convergence: ICT Convergence Powered by Smart Intelligence, ICTC 2018(1)
Applied Artificial Intelligence(1)
Computer Communications(1)
Área temáticas
Física aplicada(3)
Métodos informáticos especiales(2)
Comunicaciones(1)
Funcionamiento de bibliotecas y archivos(1)
Medios documentales, educativos, informativos; periodismo(1)
Área de conocimiento
Aprendizaje automático(5)
Ciencias de la computación(3)
Comunicación(3)
Algoritmo(2)
Aprendizaje profundo(1)
Origen
scopus(9)
BLER performance evaluation of an enhanced channel autoencoder
ArticleAbstract: The concept of using autoencoders (AEs) to represent wireless communication systems as an end-to-endPalabras claves:Autoencoder, deep learning, End-to-end learning, modulation, neural network, Wireless communicationsAutores:Lim W., Manuel Eugenio Morocho-Cayamcela, Njoku J.N.Fuentes:scopusBreaking Wireless Propagation Environmental Uncertainty with Deep Learning
ArticleAbstract: Wireless propagation loss modeling has gained significant attention due to its critical importance iPalabras claves:deep learning, image segmentation, Path loss, Propagation model, Wireless CommunicationAutores:Lim W., Maier M., Manuel Eugenio Morocho-CayamcelaFuentes:scopusArtificial Intelligence in 5G Technology: A Survey
Conference ObjectAbstract: A fully operative and efficient 5G network cannot be complete without the inclusion of artificial inPalabras claves:5g networks, Artificial Intelligence, deep learning, IT Convergence, Machine learning, Next Generation NetworkAutores:Lim W., Manuel Eugenio Morocho-CayamcelaFuentes:scopusAccelerating wireless channel autoencoders for short coherence-time communications
ArticleAbstract: Traditional wireless communication theory is based on complex probabilistic models and fixed conjectPalabras claves:Autoencoders, Channel estimation, deep learning, physical layer, Wireless systemsAutores:Lim W., Manuel Eugenio Morocho-CayamcelaFuentes:scopusFine-tuning a pre-trained Convolutional Neural Network Model to translate American Sign Language in Real-time
Conference ObjectAbstract: In this paper, we present a real-time American Sign Language (ASL) hand gesture recognizer based onPalabras claves:Artificial Intelligence, Convolutional neural network, image classification, real-time, Sign Language, Transfer learningAutores:Lim W., Manuel Eugenio Morocho-CayamcelaFuentes:scopusMachine learning for 5G/B5G mobile and wireless communications: Potential, limitations, and future directions
ArticleAbstract: Driven by the demand to accommodate today's growing mobile traffic, 5G is designed to be a key enablPalabras claves:5G mobile communication, Artificial Intelligence, B5G, Machine learning, Mobile Communication, Wireless CommunicationAutores:Lee H., Lim W., Manuel Eugenio Morocho-CayamcelaFuentes:scopusPattern recognition of soldier uniforms with dilated convolutions and a modified encoder-decoder neural network architecture
ArticleAbstract: In this paper, we study a deep learning (DL)-based multimodal technology for military, surveillance,Palabras claves:Autores:Lim W., Manuel Eugenio Morocho-CayamcelaFuentes:scopusLearning to Communicate with Autoencoders: Rethinking Wireless Systems with Deep Learning
Conference ObjectAbstract: The design and implementation of conventional communication systems are based on strong probabilistiPalabras claves:Autoencoders, Channel estimation, deep learning, physical layer, Wireless systemsAutores:Lim W., Manuel Eugenio Morocho-Cayamcela, Njoku J.N., Park J.Fuentes:scopusPbkp_redicting target data rates for dynamic spectrum allocation using Gaussian process regression
ArticleAbstract: Issues in spectrum allocation between wireless network users have arisen due to the fast increase inPalabras claves:Gaussian process regression, Machine learning, Spectrum allocation, Target data rateAutores:Caliwag A., Lim W., Manuel Eugenio Morocho-Cayamcela, Njoku J.N., Xiao P.Fuentes:scopus