Mostrando 8 resultados de: 8
Filtros aplicados
Publisher
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)(3)
2016 IEEE Ecuador Technical Chapters Meeting, ETCM 2016(1)
Advances in Intelligent Systems and Computing(1)
Advances in Science, Technology and Engineering Systems(1)
Communications in Computer and Information Science(1)
Área temáticas
Métodos informáticos especiales(5)
Ciencias de la computación(4)
Programación informática, programas, datos, seguridad(2)
Economía financiera(1)
Funcionamiento de bibliotecas y archivos(1)
Constrained affinity matrix for spectral clustering: A basic semi-supervised extension
Conference ObjectAbstract: Spectral clustering has represented a good alternative in digital signal processing and pattern recoPalabras claves:Affinity matrix, kernel methods, Prior information, semi-supervised analysis, Spectral clusteringAutores:Castellanos G., Castro-Hoyos C., Diego Hernán Peluffo-OrdóñezFuentes:scopusDifferent perspectives for kernel spectral clustering: A theoretical study
Conference ObjectAbstract: Spectral clustering is a suitable technique to deal with problems involving unlabeled clusters and hPalabras claves:Kernel, Spectral clustering, SUPPORT VECTOR MACHINESAutores:Carlos A.A. Vásquez, Carlos Pupiales, Diego Hernán Peluffo-Ordóñez, Edgar D.V. Jaramillo, Edgar Maya-Olalla, JAIME ROBERTO MICHILENA CALDERÓN, Luis Suárez-Zambrano, Paul D. Rosero-MontalvoFuentes:googlescopusOn the relationship between dimensionality reduction and spectral clustering from a kernel viewpoint
Conference ObjectAbstract: This paper presents the development of a unified view of spectral clustering and unsupervised dimensPalabras claves:Dimensionality reduction, Generalized kernel formulation, Kernel PCA, Spectral clustering, Support Vector MachineAutores:A. E. Castro-Ospina, Alvarado-PÉrez J.C., Anaya-Isaza A.J., Diego Hernán Peluffo-Ordóñez, Miguel A. Becerra, Therón R., Xiomara P. Blanco-ValenciaFuentes:scopusOn the spectral clustering for dynamic data
Conference ObjectAbstract: Spectral clustering has shown to be a powerful technique for grouping and/or rank data as well as aPalabras claves:Dynamic data, Kernels, Spectral clusteringAutores:A. E. Castro-Ospina, Alvarado-PÉrez J.C., Diego Hernán Peluffo-OrdóñezFuentes:scopusImage segmentation based on multi-kernel learning and feature relevance analysis
Conference ObjectAbstract: In this paper an automatic image segmentation methodology based on Multiple Kernel Learning (MKL) isPalabras claves:Kernel learning, Relevance analysis, Spectral clusteringAutores:Álvarez-Meza A.M., Castellanos-Dominguez G., Diego Hernán Peluffo-Ordóñez, Molina-Giraldo S.Fuentes:scopusKernel spectral clustering for motion tracking: A first approach
Conference ObjectAbstract: This work introduces a first approach to track moving-samples or frames matching each sample to a siPalabras claves:Kernels, motion tracking, Spectral clusteringAutores:Castellanos-Dominguez G., Diego Hernán Peluffo-Ordóñez, Garcia-Vega S.Fuentes:scopusKernel-Spectral-Clustering-Driven Motion Segmentation: Rotating-Objects First Trials
Conference ObjectAbstract: Time-varying data characterization and classification is a field of great interest in both scientifiPalabras claves:Kernels, motion tracking, Spectral clusteringAutores:Diego Hernán Peluffo-Ordóñez, I. C. Marrufo-Rodríguez, K. L. Ponce-Guevara, M. A. Páez-Jaime, Omar R. Oña-Rocha, Riascos-Salas J.A., Salazar-Castro J.A., Torres D.M.Fuentes:scopusTheoretical developments for interpreting kernel spectral clustering from alternative viewpoints
ArticleAbstract: To perform an exploration process over complex structured data within unsupervised settings, the so-Palabras claves:Kernel, Spectral clustering, SUPPORT VECTOR MACHINESAutores:Ana C. Umaquinga-Criollo, Diego Hernán Peluffo-Ordóñez, Edgar Maya-Olalla, Hernán Mauricio Domínguez-Limaico, Luis Suárez-Zambrano, Omar R. Oña-Rocha, Paul D. Rosero-Montalvo, Stefany Flores-ArmasFuentes:scopus